Increasing Classification Accuracy by Combining Adaptive Sampling and Convex Pseudo-Data
نویسندگان
چکیده
The availability of microarray data has enabled several studies on the application of aggregated classifiers for molecular classification. We present a combination of classifier aggregating and adaptive sampling techniques capable of increasing prediction accuracy of tumor samples for multiclass datasets. Our aggregated classifier method is capable of improving the classification accuracy of predictor sets obtained from our maximal-antiredundancybased feature selection technique. On the Global Cancer Map (GCM) dataset, an improvement over the highest accuracy reported has been achieved by the joint application of our feature selection technique and the modified aggregated classifier method.
منابع مشابه
Increasing the accuracy of the classification of diabetic patients in terms of functional limitation using linear and nonlinear combinations of biomarkers: Ramp AUC method
The Area under the ROC Curve (AUC) is a common index for evaluating the ability of the biomarkers for classification. In practice, a single biomarker has limited classification ability, so to improve the classification performance, we are interested in combining biomarkers linearly and nonlinearly. In this study, while introducing various types of loss functions, the Ramp AUC method and some of...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملDetection of Breast Cancer Progress Using Adaptive Nero Fuzzy Inference System and Data Mining Techniques
Prediction, diagnosis, recovery and recurrence of the breast cancer among the patients are always one of the most important challenges for explorers and scientists. Nowadays by using of the bioinformatics sciences, these challenges can be eliminated by using of the previous information of patients records. In this paper has been used adaptive nero fuzzy inference system and data mining techniqu...
متن کاملDataGrinder: Fast, Accurate, Fully non-Parametric Classification Approach Using 2D Convex Hulls
It has been a long time, since data mining technologies have made their ways to the field of data management. Classification is one of the most important data mining tasks for label prediction, categorization of objects into groups, advertisement and data management. In this paper, we focus on the standard classification problem which is predicting unknown labels in Euclidean space. Most effort...
متن کاملOptimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions
Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions.Material and Meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005